- Crank Up an App’s
- Response Time

Alter the priority of processes to speed response time for an application,
and use the ErrorProvider to get error information about a control.

Technology Toolbox

9 VB.NET

o C#

1 SOL Server 2000
1 ASP.NET

a XML

o VB6

o Note:

Karl E. Peterson’s solution
also works with VBS.

Go Online!

¢ Preempt Other
Processes

I’m writing an application that must monitor the
status of other applications, somewhat similar to
the system Task List utility. My application needs
to be responsive to the user atall times, but I find
that it stalls when another process is performing
an intense operation. How can I crank up my
app’s response time, even when the system is
under heavy load?

A:

Most processes running on 32-bit versions of
Windows are created equal and receive essen-
tially the same “normal” priority on the CPU’s
time as any other. Some processes might need to
override the default priority assigned to them to
preempt other processes, or to run only when

by Karl E. Peterson and Juval Lowy

other processes are inactive. In your case, you
want to assign a high priority to your process to
claim more opportunities for CPU cycles than
the system would allocate otherwise. Use this
setting with extreme caution, as a high-priority
process has the capability of consuming nearly all
available CPU time.

The procedure for altering a process’s priority
is relatively straightforward. You first call
OpenProcess to obtain a handle to the desired
process. You must have PROCESS_SET _
INFORMATION access rights to ensure suc-
cess. After opening the process, call the
SetPriorityClass API to set the desired priority
level. Clean up by calling CloseHandle on the
process handle. Follow the same general proce-
dure to read a process’s priority setting, but call
the GetPriorityClass API instead. If you call the

E m.:n Pll:l-‘filjel Demo

Use these Locator+ codes at www.visualstudiomagazine.com to go directly

to these related resources.
Download

VS02110A Download the code for this article, which includes a drop-in module
containing code to set/retrieve a process’s priority; and the
ErrorProviderDemo, a Windows Forms application that shows you how to use

the ErrorProvider controls.
Discuss

VS02110A_D Discuss this article in the “Classic” VB forum.

Read More

VS02110A_T Read this article online.
VB9902AP_T Ask the VB Pro, “Force Your Way to the Foreground,” by Karl E.

Peterson

NUEPD21204AN “Boost Web Power With ASP.NET” by Rob Howard

50

SR

Please enter last name

control displays an icon next to the offending control. The
icon blinks and displays a tool tip indicating the error's

nature to the user.

VISUAL STUDIO MAGAZINE

NOVEMBER 2002 « www.visualstudi ine.com

GetPriorityClass API, you need only PROCESS_QUERY_
INFORMATION access rights to the process.

Make these priority adjustments as easy as possible by wrapping
them intoa pair of routines thataccepteithera process ID ora window
handle as a pointer to the desired process (see Listing 1). Most often,
determining your process’s handle—required to open the process—
involves an extra API call, while you always know the window handle
for your forms. So I coded the call to GetWindow ThreadProcessId
directly within my utility routines. GetWindowThreadProcessld
accepts a window handle in its first parameter, and returns the

associated process ID in its second parameter. Call SetProcessPriority
by passing a known window handle and the desired priority:

Call SetProcessPriority(_
hWnd:=Me.hWnd, Priority:=ppHigh}

You must also be aware that while you're executing within the
Visual Basic IDE, you're a part of VB's process. That is, changing
“your” application’s setting actually changes the setting for VB
iself. This might not be desirable. Two approaches you miight want

p

VB5, VB6 ¢ Adjust Your Response

B

Option Explicit

' Win32 API declarations

Private Declare Function _
GetWindowThreadProcessld Lib "user32" (_
ByVal hWnd As Long, TpdwProcessld As Long) _
As Long

Private Declare Function OpenProcess Lib _
"kernel32™ (ByVal dwDesiredAccess As Long, _
ByVal blInheritHandle As Long, _
Byval dwProcessID As Long) As Long

Private Declare Function SetPriorityClass Lib _
"kernel32" (ByVal hProcess As Long, _

ByVal dwPriorityClass As Long) As Long
Private Declare Function GetPriorityClass Lib _
"kernel32" (ByVal hProcess As Long) As Long

Private Declare Function CloseHandle Lib _
"kernel32" (ByVal hObject As Long) As Long

" Used by the OpenProcess API call

Private Const PROCESS_QUERY_INFORMATION _
As Long = &H400

Private Const PROCESS_SET_INFORMATION _
4s Long = &H200

' Used by SetPriorityClass

Private Const NORMAL_PRIORITY_CLASS = &H20
Private Const IDLE_PRIORITY_CLASS = &H40
Private Const HIGH_PRIORITY_CLASS = &HB0O
Private Const REALTIME_PRIORITY_CLASS = &H100

Public Enum ProcessPriorities
ppldle = IDLE_PRIORITY_CLASS
ppNormal = NORMAL_PRIORITY_CLASS
ppHigh = HIGH_PRIORITY_CLASS
ppRealtime = REALTIME_PRIORITY_CLASS
End Enum

Public Function GetProcessPriority(Optional _
ByVal ProcessID As Long, Optional ByVal hWnd _
As Long) As Long
Dim hProc As Long
Const fdwAccess As Long = _

PROCESS_QUERY_INFORMATION

" If not passed a PID, then find value from hknd.
If ProcessID = 0 Then

Call GetWindowThreadProcessId(hWnd, _
ProcessID)
End If

' Need to open process with simple query
' rights, get the current setting, and close
' handle. ?
hProc = OpenProcess(fdwAccess, 0&, ProcessID)
GetProcessPriority = GetPriorityClass(hProc)}
Call CloseHandle(hProc)

End Function

Public Function SetProcessPriority(Optional _
ByVal ProcessID As Long, Optional ByVal hWnd _
As Long, Optional ByVal Priority As _
ProcessPriorities = NORMAL_PRIORITY_CLASS) _
As Long
Dim hProc As Long
Const fdwhccessl As Long = _
PROCESS_QUERY_INFORMATION Or _
PROCESS_SET_INFORMATION

Const fdwAccess2 As Long = _
PROCESS_QUERY_INFORMATION

" If not passed a PID, then find value from hWnd.
I1f ProcessID = 0 Then
Call GetWindowThreadProcessId({hWnd, _
ProcessID)
End If

' Need to open process with setinfo rights.
hProc = OpenProcess(fdwAccessl, 0&, ProcessID)
If hProc Then
' Attempt to set new priority.
Call SetPriorityClass{hProc, Priority)
Else
' Weren't allowed to setinfo, so just open
' to enable return of current priority setting.
hProc = OpenProcess(fdwAccess2, 0&, _
ProcessID)
End If

' Get current/new setting.
SetProcessPriority = GetPriorityClass(hProc)
' Clean up.
Call CloseHandle(hProc)

End Function

Listing 1 You might need applications to be responsive to the user immediately, regardless of system load, or you might want them to
execute only when the system isn't too busy. Adjusting the overall priority the system assigns your application is as simple as passing a
known handle to the routines in this code, along with the desired priority setting. Be sure to read the warnings in the SDK docs about "real-
time" processes and their ability to destabilize the system, before you use your desired setting. You should consider even “high” priority

usage carefully, as such a setting can consume the CPU fully.

VISUAL STUDIO MAGAZINE + NOVEMBER 2002 -«

www.visualstudiomagazine.com

51

C# o Set Up the ErrorProvider 0

void OnOK(object sender,EventArgs e)
{
if(m_FirstNameTextBox.Text = "")
{
m_ErrorProvider.SetError(m_FirstNameTextBox,
"Please enter first name");
}
else
{

m_ErrorProvider.SetError(m_FirstNameTextBox,""

05

}

if(m_LastNameTextBox.Text = "")

{
m_ErrorProvider.SetError(m_LastNameTextBox,

"Please enter last name");

}

else

{

m_ErrorProvider.SetError(m_LastNameTextBox,"");
)

Listing 2 Once the application logic decides to provide an error alert
to the user, you need to tell the ErrorProvider which control to dis-
play the error icon next to and the error message. The error message
is displayed as a tool tip.

to consider would be to reset the process priority back to “normal”
before your application ends, or to test for your application’s
compiled state before adjusting its priority. —K.E.P.

e Show Error Messages
in Windows Forms
ASP.NET has validators that verify control state and display error
messages. Is there an equivalent in Windows Forms?

A:

The primary purpose of ASP.NET validators is to save round trips
to the Web server for content verification, because that information
is available on the client’s side. This goal is pointless in a Windows
Forms application, because it’s a rich client and can do content
verification and processing. Another useful feature of ASP.NET
validators is that they display the error message automatically that’s
next to the control in question. Fortunately, Windows Forms do
have an equivalent feature: the little-known ErrorProvider control.
Although ErrorProvider is geared toward validation of data-source
bound controls (such as the data grid), you can use it to validate and
provide error information on any other control. For example,
consider a Windows Forms dialog that asks the user for firstand last
name (see Figure 1).

The form needs to alert the user if he or she doesn’t provide either
afirst or a last name. Use the ErrorProvider for this by dragging and
droppingan ErrorProvider control from the toolbox onto the form.
The ErrorProvider isn’t a visual control, so it appears underneath
the form. The ErrorProvider displays a small icon when you set it to

52 VISUAL STUDIO MAGAZINE -«

display an error alert. The icon can blink, and you can configure the
blink rate and policy.

Bring up the visual properties designer window for the
ErrorProvider control. Here you can provide a custom alert icon
instead of the default exclamation mark. You can set the blink policy
to always blink, never blink, or blink if the error message has
changed. The default is to blink if the error message has changed. I
prefer to set the policy to always blink. You can also set the blink rate
(the default is to blink every 250 milliseconds).

The rest of the validation requires a little coding. Create the code
for the OK button Click event handling method for the form in
Figure 1 (see Listing 2). The logic is straightforward—you call the
ErrorProvider control’s SetError() method if either the first name or
the last name textboxes are empty. SetError() accepts two param-
eters: the control to attach itself to, and the error message to present
as a tool tip when the cursor hovers over the error icon. You want
to clear the error icon from the form if the user clicks on the OK
button again, this time providing text. Do this by calling SetError()
with an empty string. You can also instruct the ErrorProvider where
to display the control’s alert icon by calling the SetIconAlignment()
method, passing in an enum of type ErrorIconAlignment, defined

like this:

public enum ErrorlIconAlignment
{

BottomLeft,

BottomRight,

Middleleft,

MiddleRight,

TopLeft,

TopRight

The default alignment is ErrorIconAlignment.MiddleRight, as
shown in Figure 1. —/.L.

Karl E. Peterson is a GIS analyst with a regional transportation
planning agency and serves as a member of the VSM Technical
Review and Editorial Advisory Boards. Online, he's a Microsoft MVP
and a section leader on several DevX forums. Find more of Karl's VB
samples at www.mvps.org/vb.

s P UM 1 N

Juval Léwy is a software architect and the
principal of IDesign, a consulting and training
company focused on .NET design and .NET
migration. Juval is a Microsoft regional direc-
tor for the Silicon Valley, working with
Microsoft on helping the industry adopt .NET.
He's the author of COM and .NET Compo-
nent Services (O'Reilly & Associates). Con-
tact him at www.idesign.net.

ompement Services

Additional Resources

SetPriorityClass: http://msdn.microsoft.com/library/
~ default.asp?url=/library/en-us/dllproc/prothred_9z1v.asp

NOVEMBER 2002 +« www.visualstudiomagazine.com

